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Chapter 1 - Introduction - Symmetries in the Plane
If algebra is the study of structure, then group theory is the study of symmetry.

Symmetries from Geometry
A canonical example for introducing groups is the symmetries of regular polygons (we will see later that these
correspond to the dihedral groups ). Polygons may be symmetric with respect to rotation and/or reflection;
"applying" two symmetries to a shape will yield another symmetry. This is the structure of a group.

We can represent a group's structure with a multiplication table that contains the result of "operating" on any two
elements. By convention, the column indices of the table corresponds to the first operand and the row indices
correspond to the second operand.

Note that symmetries of a square can be seen as functions in  that map the square back to itself. This is an
important idea.

The platonic solids are also good examples for finding symmetries.

Symmetries of the Roots of a Polynomial in 

Here, conjugates provide a symmetry that is "like" a reflection with respect to the real axis.

We also see symmetry in roots of unity, i.e. the roots over  of the equation  for fixed . In

closed form, these roots are  for , which describe the vertices of a

regular -gon centered at  with "radius"  on the complex plane. These roots form a group under
multiplication.

Symmetries and Isometries of 

This matters because commutativity isn't given: we may have ;

Every element in the set of symmetries must appear exactly once in each row and column (we will prove why
later, as an assignment question).

For reflections, we need an extra dimension; a reflection in  can be "executed" as a rotation in  that
"flips" .

Theorem 1.1: Fundamental Theorem of Algebra

A polynomial  of degree  must have  roots (with multiplicity) in .

If  is a root of , then its conjugate  must also be a root of  as well.

Permuting roots of polynomials leads into Galois theory.

Definition 1.2A: Linear Isometry in 



We can generalize linear isometry to metric spaces by defining in terms of an arbitrary distance function instead of
the Euclidean norm:

Finally, we note (as a well-known linear algebra result) that the composition of linear transformations corresponds
to the multiplication of the corresponding matrices of the transformations. So, any relationship that exists between
multiple transformations also exists between the matrices.

A linear isometry  in  is a linear transformation  such that .

So, by definition, any two points  stay the same "distance" away from each other after being transformed
by a linear isometry.

Alternate characterization: the matrix representing a linear isometry has determinant  or . If the
determinant is , no "flip" has occurred; such an isometry is called a rigid transformation.

We can prove this preserves angle as well; thus linear isometries preserve inner products.

Definition 1.2B: Isometry in a Metric Space

An isometry is a map  between metric spaces  that preserves distance, i.e. such that for all
, we have .

Definition 1.2C: Affine Isometry in 

An affine isometry  in  is a linear transformation  of the form  where

 is a linear isometry and  is fixed. In the context of linear algebra, we may also call this an
affine transformation.

We can characterize an affine isometry is a linear isometry (  in the definition) and a translation by .

Definition 1.3: Symmetry in 

A symmetry  in  of geometric object  is a function  that preserves the distance between
any two points in .

Proposition 1.4

Let  be a polytope in  with its centroid (center of mass) at . Any symmetry of  must be a linear
isometry of .



Chapter 2 - Modular Arithmetic
Oops! All number theory.

For  with , we can always find  and  such that , i.e. we can divide any
two numbers if we allow for a non-zero remainder. This is Euclidean division.

For integers  and nonzero natural number , we say "  is congruent to  modulo " (denoted )
iff  divides .

Congruence mod  is an equivalence relation, so we can partition  into equivalence classes. These ones in
particular are called congruence classes and are denoted  (the
 is generally omitted, and often left as a free variable anyway).

We define  as the set of congruence classes mod , i.e. ; any element in  can
represent its congruence class.

Addition and multiplication are well-defined with respect to congruence classes, i.e. for any choices of
representatives, the corresponding representative given by the operation will be in the correct congruence class.
Symbolically,  and .

The size of the remainder  is bounded by .

If , we say  divides , written .

Theorem 2.1: Bézout's Lemma

For any nonzero , there exist  such that 

If two numbers are congruent mod , they yield the same remainder when divided by 

E.g.  since  and  both have remainder  when divided by .

By the bound on the remainder, each remainder has exactly one class, and each class corresponds to a
remainder. So,  has  elements, namely .

This notion of well-definedness comes up later when considering cosets.



Chapter 3 - Group Definitions and Examples
Its time

In particular, it is useful to characterize known structures from linear algebra in terms of groups:

Definition 3.1: Group

A group  consists of a set  of elements and a binary operation  which adhere to the
following group axioms:

Closure:  and  imply 
Associativity:  for all .

Identity/Neutral Element: There exists some  such that  for all 

Inverses: Each element  has an inverse  such that 

E.g. , , , and  are all groups
E.g.  is a group, where , since  does not have a multiplicative inverse in .  and 
also form groups under multiplication, but  does not because only  have multiplicative inverses.

E.g. any ring  implies a group 
 is a group if and only if  is a prime number. If  is composite,  will have zero-divisors (e.g.

 such that ), contradicting closure.

The set  of  matrices over a field  is a group under addition, but not matrix multiplication.
However, the general linear group  of invertible  matrices does form a
group under matrix multiplication.

In this course, we choose  for our field, i.e. we speak of .

More generally, the set of linear transformations  forms a
group under composition. We note that this is the "same" group as  iff .

The orthogonal group  is a group under matrix multiplication;
inverses are given by .

If  is a linear isometry, then  is in the orthogonal group

So, matrices in the orthogonal group represent transformations under which the inner product is
invariant, i.e. orthogonal transformations preserve distances and angles.

In , these are the distance-preserving transformations with a fixed point.

Definition 3.3: Invertible Congruence Classes

 denotes the set of congruences classes  that are invertible in . So, we have .

Theorem 3.4:  is a Group

We have , i.e.  is the set congruence classes  whose
representatives  share no factor with .



We can find the inverse  of  in  by using the Euclidean algorithm to  and  until we find remainder .
Then, we re-write  as , then continue expanding everything out in reverse from how
we found it with the Euclidean algorithm.

 is a group under 's multiplication.

Proof sketch (1): invertible →  →  →  for some . If some common
factor  divides both  and , then it divides  by Bézout's lemma; thus  and thus  is  or , so

. We can essentially perform this derivation in reverse to show the other direction

We can prove (2) by simply checking the group axioms



Chapter 4 - Permutations

Since permutations are bijective, we can combine them with composition, i.e. by performing one after the other.

We have 

The identity element of  is the permutation  and the inverse element is the permutation of

 is .

A cyclic permutation or cycle is a permutation of the form , i.e. where each

element in the cycle is "shifted" to the right, e.g. .

Definition 4.1: Permutation

A permutation  of  is a bijective function .

This makes sense after first learning it; of course a bijective function "re-orders" its domain. And of course a
permutation must be injective and surjective by definition.

It is common to represent permutations as .

Definition 4.2: 

We define  as the set of all permutations of the set . So,  is a set of functions. We define the
symmetric group  as the set of permutations of the set  specifically; .

Proposition 4.3:  is a Group

Let  be a set. Then, the set  of all permutations of  is a group under composition .

Proof: A composition of two permutations  of  is another function mapping  because both 
and  are bijections. From here, checking the proposition against the group axioms is trivial.

In particular, we can find the inverse permutation by switching the rows of the  matrix representation
(then reordering the columns to sort by the first element)

If  is a transposition,  since we simply "swap back"; thus transpositions are involutions.

We may notate the cycle above as 

The order of this sequence matters;  gets shifted differently than .
Note: a subset of a permutation may be a cycle, e.g.  corresponds to the permutation

. The unchanging elements in this permutation are fixed.



Two cycles are disjoint if they cycle disjoint sets of elements.

The inverse of a permutation will retain the structure of the cycle decomposition, but reverse the direction of each
cycle. Fixed points and transpositions will remain unchanged because they are involutions.

Permutations  are conjugate if there exists a third permutation  such that .

Graphically, we can convert cycle notation to two-row notation by writing the cycle, then writing the cycle
again below it, but shifted one element to the left.

Disjoint cycles are commutative: applying both yields the same result, no matter the order.

Theorem 4.4: Cycle Decomposition Theorem

Every permutation  of a finite set  can be expressed as a product as disjoint cycles , i.e.
. This decomposition is unique up to the "starting point" of each cycle.

The proof of the Cycle Decomposition theorem follows structurally from the algorithm below; it uses
induction on .

Algorithm for finding Cycles in a Permutation

1. Check which elements are fixed in the overall permutation ; these are cycles of length  and will be as-
is in the product.

2. Consider an element in  (e.g. ) and follow where it gets sent when it is repeatedly permuted; i.e. the
sequence . Clearly, this will eventually come back to  (see aside below) because 
(and thus ) is finite. This reveals a cycle.

3. Find the first element not in the cycle and repeat this process.

4. Eventually, each element will be in a cycle.

Aside: the structure of permutation groups lend themselves to graph-theoretic arguments: a permutation  is
shaped like a directed graph where  and an arc from  to  exists iff  sends . The resulting
graph's vertices all have in-degree and out-degree . For example, the proof of the Cycle Decomposition
Theorem follows naturally from thinking in terms of components and Eulerian paths.

Theorem 4.6: Same Cycle Structure  Conjugate

Permutations  are conjugate if and only if they have the same number of cycles of each length.

Aside: it will seem like the "cycle sequence" generating series  describing how many cycle of each
length a permutation has is invariant under isomorphism.
Proof sketch : we assume . We can break  down into its cycles and insert pairs, , 
between each cycle in the composition; these cancel out to , so they don't change the value. By
associativity, each cycle in  gets transformed into ; so, each cycle in  has a corresponding
(conjugate) cycle in . Thus,  and  have the same "cycle sequence".



Note: the full proof has a few points of interest:

If we have cycles  and , then we can pick permutation  such that
 by defining .

So, given non-cycles  and , we can find  such that  by decomposing  and  into cycles
(they must have the same structure since they conjugate), using the formula above to convert the cycles, then
converting back with .

Proof sketch : We pick a permutation  that preserves cycles, i.e. that doesn't map two elements in a
cycle to different cycles. Thus, the conjugation maps the old cycles to the new cycles, permutes those, then
(inversely) maps the permuted new cycles back to the old ones, assuring conjugacy.

 trick: in a group theory proof, we can replace  with some  or  and continue deriving from
there

In , we have a long chain of , which by associativity cancels to
, which cancels to . This kind of cancellation

structure is useful
E.g. diagonalization of matrices

E.g. telescoping series

Lemma 4.7: Conjugate of a cycle

If  and cycle , we have 

I.e. the conjugate of a cycle is a permutation of the elements of that cycle

Proof: clearly  permutes ; we just need to derive what this permutation is. We define
; note that proving  is equivalent to proving .

We have  and , so these two are equal for all .
For  for all ,  is not in the cycle →  is fixed by  →  since  is injective →  is fixed by ;
it follows that 

Such a  isn't unique: if  have "cycle generating sequence" , then there are 

permutations  in  that satisfies .

Definition 4.8

The order of a permutation  is the smallest  such that .

Clarification:  applies the permutation  in succession  times.

Proposition 4.9

The order of a permutation  is the  (least common multiple) of the orders of the cycles in its cyclic
decomposition.



Rough proof (full proof in assignment 3): each time  is composed with itself, each cycle is cycled once. So, to
have  such that , all the cycles must return to their original forms. Thus, by definition,  must be a
common multiple of the cycle lengths; it follows that the order of  is the least common multiple.

Theorem 4.10

 contains exactly  permutations.

Proof by definition?

Coset proof sketch (full proof in course notes): the proof is by induction on . We can partition  into sets
, by the value of , i.e.  corresponds to all  such that . We can define  as the

transposition , possibly . One can conclude that . It is also clear that  are

disjoint up to , so there are exactly  such cosets. So, there are  elements in .



Chapter 5A - Basic Theory of Groups, Subgroups, Cyclic
Groups

So far, we have worked concrete instantiations of groups, like . In this chapter, we move towards proving results
about groups in the abstract.

This chapter comprised most of the course, so I've further broken it up in my notes.

Elementary Results (5.1)

Proposition 5.1: Uniqueness of the Identity Element

If  are both identity elements of group , then .

Proof: We have  because  is an identity element, and  because  is an identity element.
So, .

Proposition 5.2: Uniqueness of the Inverse

If element  in group  has both  as inverses, then .

Proof: we have , so  by associativity.
 since  is the inverse of , so we have .

Proposition 5.3: Inverse of Product



We define the order  of finite group  as the number of elements in the group.

We cannot enumerate all the groups of given order; that question isn't even properly formed without discussion of
isomorphism. Indeed, because algebra is the mathematics of structure, we generally aren't as concerned about the
actual elements of a group as much as the structure they imply.

Subgroups and Cyclic Groups (5.2)
A subgroup  of group  is a nonempty subset of  such that  is itself a group.

We can tersely check if  is truly a subgroup of  by using the subgroup criterion.

For elements  of group , we have .

Proof: consider the expression , we wish to show this is equal to . By associativity, this
expression equals ; this clearly cancels to  by successive cancellation of inverses

Aside: This "inverse reverses the order of the product" pattern also pops up everywhere

Proposition 5.4: Cancellation Law

For elements  in group , we have  and .

Proof:  must exist in . We apply  to the left side of both equations; this clearly cancels out to 
(we perform the same operation on the right for the second case).

Proposition 5.5: Generalized Associativity Law

Let  be a group. There is a unique way to extend the binary operation  to a map
 such that  (base case) and

 (recursive case).

I.e. associativity generalizes to an arbitrary number of elements; this is intuitively obvious.

If  is infinite, we simply denote 

We've already seen that 

We also have 

So,  is closed under , has a neutral element (more on this later) and inverses

We can use order notation  to notate subgroups

 is trivially a subgroup of any group

Definition 5.8: Subgroup Criterion

A non-empty subset  of a group  is a subgroup of  if and only if  for all
.



As a corollary, any subgroup has the same identity element of its parent group; this follows directly from the
subgroup having inverses.

E.g. for fixed  and ,  (under ) has subgroup .

E.g. for group  we define the center of  as the subgroup  consisting of all elements in  that are commutative
with every other element of , i.e. 

The simplest groups to understand are cyclic groups; all of these "look like"  for some  (we will formalize
this later).

So, instead of having to prove each group axiom separately, proving this statement is analogous to proving
that  is a subgroup.
Proof: we implicitly must have inverses by our inclusion of  in the criterion expression. In turn, if we have
inverses, we have a neutral element by definition. By setting  to just , we have closure. Finally,
associativity is inherited directly from .

Proposition 5.10: Intersection of Subgroups is a Subgroup

For group  with subgroups , we find that  is also a subgroup of .

Proof: simply a matter of showing axioms. Each  must contain , so the intersection is not empty. If the
operation is performed on two members of the intersection, they are closed within every subgroup → closed in
the intersection. Etc.

Definition 5.11: Cyclic and Generated groups

Let  be a group and . We define the subgroup of  generated by , denoted  as the set of all
powers of  (i.e. ).

If  generates all of  (i.e. ), then  is a cyclic group and  is a generator of .

By convention,  (i.e. the inverse of  to the th power) and 
E.g.  and  both generate the group ; for a general element, we have .

E.g.  is also generated by  and , but also other elements, namely when , implying
 for some .

Proposition 5.12:

For  and ,  generates  if and only if .

Proof: follows more or less from the second example above

Definition 5.13: Order of a Generated Subgroup



To know the structure of a group is to know what subgroups the group has, and how their structure fits into the
structure of the group itself.

The set of subgroups of a group  forms a lattice (a set with partial order) under set inclusion. So, subgroups
being "contained" in other subgroups is a well-defined concept. We can draw a lattice diagram for a group:

Aside 1: If a total order of subsets implies a tree, then a partial order of subsets (poset/lattice) defines a DAG.

Aside 2: Using lattice diagrams is a cool way to generate graphs with intricate, symmetric structure: pick a
number, determine the factors of that number, use those to draw the subgroup lattice of , use some graph
drawing algorithm to render it.

So the structure of the subgroups of  more or less inherits from the divisors of particular elements.

The order  of the subgroup  generated by  in group  is the smallest  such that . So,

E.g. in , the order of  is  and the order of  is .

E.g. In , the order of  is  since 

E.g. in the group of symmetries of a square, the set of rotations is a subgroup (which happens to contain
subgroups itself)

The Sylow subgroups (later) are particularly important/atomic

1. Determine all the subgroups of the group
2. Determine which subgroups contain which subgroups; the result will look something like a DAG

3. Draw a surjection arrow ( ) between any a subgroup and any subgroup inside of it

Theorem 5.14: Lagrange's Theorem

Let  be a finite group with subgroup . We have , i.e. the order of a subgroup must divide the order
of its constituent group.

We will prove this later

Theorem 5.15: Classification of Subgroups of 

For arbitrary subgroup  of , there exists some  such that .
If , then  (i.e.  is a subgroup of ) if and only if .

Proof (1): Let  be the smallest positive integer in .  must contain all multiples of  by closure, so 
. Pick  and let  for  (exists by divisibility). Thus, .  is the smallest
integer in  and  , so  and thus , so . Thus, .

Proof (2): : Clearly if , then  so  for some integer , and thus . : if ,
then , so .  is a group under addition, so all multiples of  must belong to , including . So

.



So, the subgroup structure of  more or less inherits from , but has richer information because the entire group
 can be generated by a non-unit element, which in turn is due to 's cyclic nature. We'll see more about the

relationship between  and  when we discuss the quotient construction.

By corollary, all subgroups of  and  are cyclic.

Cayley Diagrams (5.4)

Theorem 5.16: Classification of Subgroups of 

For arbitrary subgroup  of , there exists  where  such that , i.e.  is
generated by .

If  is the smallest integer such that  generates , then , and  (if  is , we replace it with 

by convention).

If we have  and , and  both divide , then  is a subgroup of  if and only if .

Proofs follow from divisibility in a similar way to the proof of THM 5.15

Proposition 5.18: Equality Condition of Generated Subgroups

If  forms a cyclic subgroup of , then 

Proof uses Bézout's Lemma.

Definition 5.19: Abelian Group

An abelian group is a group  such that for all , we have . So, an abelian group is
a group with the additional constraint of requiring commutative multiplication.

Definition 5.21: Generating Set

A generating set  of the elements  of group  is set such that every element of  can be expressed
as an expression of elements of  (or their inverses) and the binary operation . So,

 for .

E.g.  is a generator of , and thus  for all  as well
E.g.  generates .

This shows that generator sets are not unique

E.g.  generates the permutation group ; we showed this on assignment ,
albeit under a different definition.

Definition 5.22: Cayley Diagram

We define the Cayley diagram  of group  with generating set  as a directed graph where:



The vertices of  are labelled by the elements of , i.e. 

Each edge of  corresponds to a member  of the generating set ; this edge is assigned the color
 (multiple edges may correspond to the same ). So our chromatic function satisfies

An edge from  to  ( ) exists if an only if , i.e. when  can be derived from  by
operating on it and .



Chapter 5B - The Dihedral Groups
The dihedral group  is the group of symmetries of the regular -gon.

 has order , i.e. a regular -gon has  symmetries. We find  symmetries in the (convention: counter-

clockwise) rotations  by  for  and  symmetries given by reflections:  for odd 

and  for even .

Subgroups of the Dihedral Groups
The dihedral groups have some basic subgroups:

Useful Identities for Computation

We can relate rotations and reflections with the identity  for odd  and  for even 
.

We also find that rotations followed by reflections are also reflections:  for odd  and  for

even , .

Particularly, a regular -gon in  centered at  with vertices located at  for

The symmetries of the triangle and square are  and  respectively

If  is odd, each reflection passes through exactly one vertex and bisects the opposite edge of the -gon. If 
is even, a reflection passes through each vertex and bisects each edge. However, these lines of reflection "line
up" such that they are double counted, so we have  of them.

Aside: I've come to learn that the notation  to mean the dihedral group of order  is non-standard; I won't
change it, but be warned.

The rotation  generates a cyclic subgroup  that consists of all the

rotations in , so 

In general, the rotation  generates a cyclic subgroup of  (and thus of ) with order .

So,  acts like 
For any reflection ,  is a subgroup of order  because by the definition of a reflection, .

In terms of angles: .

Justification: this composition rotates  counter-clockwise by  vertices, performs the "base" reflection about
the th vertex, then rotates back (clockwise) by  vertices again.

 is the reflection about the line that forms angle  with the horizontal axis; we index  with its angle 
instead of its corresponding integer for ease of notation.

Justification:  cannot be a rotation (or  would be a rotation too), so it must be a reflection, and thus
fix some line through . The other point fixed by  is the point  sends , namely



Finally, from the general definition of the inverse of a composition, we find . In the case , we

find the useful identity .

, which trivially must be .

We can also prove this by directly expanding out the definitions of the symmetries involved and evaluating
the trigonometry.



Chapter 5C - Homomorphisms and Isomorphisms

Generally, we just write  to characterize a homomorphism; using the different symbols for
binary operations illustrates that the operations implied act on different groups.

Thinking in terms of homomorphisms is useful everywhere in math because it lets you use what you know about
one structure to learn about another structure.

A monomorphism is an injective homomorphism.

A epimorphism is a surjective homomorphism.

Definition 5.23: Group Homomorphism

A group homomorphism between groups  and  is a function  such that for
, .

E.g. vector spaces are abelian groups under vector addition, so any linear transformation  is a
group homomorphism since we know  holds for vector spaces (the inner 
happens in the vector space , whereas the righthand sum is in  because the vectors have already been
transformed)
E.g. the determinant  is a group homomorphism  because 
for all . Notably,  only maps to the invertible elements of , namely .

E.g. the function  that maps  is a group homomorphism; this indicates that
addition is well-defined between both groups. Note that its inverse is not a group homomorphism.

E.g. if  abelian, then  given by  for fixed  is a homomorphism (actually, an
isomorphism, more later)

Lemma 5.24: Homomorphism Identities

If  is a homomorphism, then we have

, i.e. neutral elements are preserved under homomorphism

For all , , i.e. inverses are preserved under homomorphism.

If  is also a group homomorphism, then  is a group homomorphism

If group  has subgroup , we have . The inclusion map  defined by  is a
monomorphism.

Every monomorphism encodes an "inclusion" (more later)

E.g.  is surjective, but not injective (e.g. there are multiple matrices with the same
determinant).

E.g.  given by  is an epimorphism
Canonical example: the quotient group homomorphism



Isomorphic groups have the same shape, i.e. they are differently-named expressions of the same underlying
structure. Any property a group can have (e.g. its order, whether it is abelian or cyclic, etc.) is invariant under
isomorphism; thus, if two groups do not share a property, they cannot be isomorphic.

We can prove isomorphism by first providing (proving) a group homomorphism , then

Definition 5.25: Group Isomoprhism

An isomorphism  is a group homomorphism between  and  that is both injective and
surjective. Groups  and  are isomorphic iff there exists a group isomorphism between them.

E.g.  that maps a symmetry of an equilateral triangle to the corresponding permutation described

by where it sends each of its corners, i.e.  where  is where vertex  is sent.

Directly proving that  is both injective and surjective

Showing that  has an inverse  that is a total function; this is effectively done by defining  explicitly.

Definition 5.26A: Kernel of a Homomorphism

The kernel  of group homomorphism  is the group of values that  maps to the neutral
element  of , i.e. 

Definition 5.26B: Image of a Homomorphism

The image  of group homomorphism  is the set of values in  that are mapped to from
 by , i.e. .

The (abuse of) notation  effectively suggests .

Lemma 5.27: Kernel and Images are Subgroups

For homomorphism ,  is a subgroup of  and  is a subgroup of .

Lemma 5.28: Characterizing Homomorphism in terms of Kernel and Image

Group homomorphism  is injective if and only if  and surjective if and only if
.  is an isomorphism if and only if both of these conditions hold.

Proof (injectivity): : as a homomorphism,  must map  to  if ; homomorphisms map neutral
elements to neutral elements, so . We assumed injectivity, so this implies , implying

. : if , then , so  since  is a
group homomorphism. Thus, , and thus is equal to  by assumption. Thus, .
Proof (surjectivity): we are just restating the definition of subjectivity here.



A useful way to show non-isomorphism is to consider the order of all the element in one group and show that no
element of that order exists in another. E.g.  has elements of order , but  doesn't.

Lemma 5.29

For group  with element , if , then , i.e.  is a multiple of , the order of  in .

E.g. for abelian group ,  given by  is a group homomorphism with kernel
. We can use a number-theoretic argument to derive ; this is good example to

generalize the previous lemma from

E.g. for homomorphism  given by  for some , then ,
which implies that , implying . We know , which has order , so

. So, .

Also, , so . This is useful even when we don't
know the value of ; all group homomorphisms  can be expressed as  (earlier
result).

Lemma 5.30: Inverse of Isomorphism is an Isomorphism

If  is an isomorphism, then it is invertible and its inverse  is also an isomorphism.

Moreover, we can show that a homomorphism  is an isomorphism by showing that  is a homomorphism
as well.

Proposition 5.31: Classification of Cyclic Groups

For cyclic group  generated by element , i.e. :

If  has finite order, then  is isomorphic to 
If  has infinite order, then  is isomorphic to  (  by abuse of notation)

We propose the isomorphism  defined by  to prove both facts. In each case, we
must prove that  and .
So, cyclic groups "look like" the integers mod  for 



Chapter 5D - Cosets and Lagrange's Theorem

We define the index  of subgroup  of group  as the number of left cosets of  in . Thus, by

Lagrange's Theorem, .

Definition 5.32: Left and Right Cosets

Let  be a group with element  and subgroup . The left coset  of  in  is defined as
. The right coset  of  in  is .

E.g.  in general

E.g. for  and , the cosets are  for 

E.g. for , we have , which also
happens to be equal to . Funny…

We usually consider left cosets

Proposition 5.33: A group is the union of its cosets under any subgroup

Let  be a group with subgroup .

For all , either  or ; the same fact is true of right cosets

 is equal to the (disjoint) union of all its left (or right) cosets of  in , i.e. .

Proof (first): Assume , so pick . So, . From this we get
. So, if , then , so . We can make exactly the

same argument switching  for . So, .

Proof (second): , so this is a superset of or equal to . Clearly each

element in the union is in , so this union is equal to .

Theorem 5.34: Lagrange's Theorem (Coset version)

Let  be a finite group with subgroup . Then the order  of  divides the order of  (as we know).

Also, the number of left cosets of  in  is equal to .

Proof: by proposition 5.33, we know that there exist disjoint cosets  whose union forms . So,
. We also know from our theory of cosets that  is a bijection for all , so

 for each . Thus,  (  times) . Thus, we know that  divides

. We implicitly defined  as the number of left cosets, so , as desired.

Corollary 5.36: Order of an Element divides the Order of a Group



Left and right cosets of a group are different in general, but might be the same for certain subgroups. A normal
subgroup is a subgroup  of group  such that the right cosets of  in  are equal to the left cosets of  in .

When the set of right cosets and left cosets equal, we use the notation  to denote the set of cosets that normal
subgroup  of  induces on .

For finite group  with element , the order of  in  divides the order of  (i.e. ) and

.

Proof: we know that  must be a subgroup of  (namely, a cyclic subgroup). So, by Lagrange's theorem,
 divides . Thus,  for integer ; we have , i.e.

since  divides ,  is a multiple of  and thus is like "returning back to  through " multiple
times.

Corollary (#1) 5.37: Subgroups of Group of prime order

Let  be a group of prime order, i.e.  for prime some 

The only subgroups of  are  itself and the trivial subgroup 
All non-identity elements of  generate , i.e. for , 

 is isomorphic to 

Proof: The order of any subgroup must divide the order of the group; since this is prime, subgroups could
only be of size  or . We have described both; these must be the only subgroups (1). So, if , then 
doesn't generate a subgroup  it must generate  (2). (3) follows from theorem 5.16.

Aside: where does the definition of "prime" come from? Ring theory, or can it be defined entirely within
group theory?

Aside: this seems connected to the "All fields of prime order are the same" Galois field thing from MATH 422

Definition 5.38: Normal Subgroup

A normal subgroup  of  (denoted ) is some subgroup  such that, for all , we have
. This implies that for all  and , we have  as well.

E.g. the subgroup of  consisting of all matrices with determinant  (called the special linear group
) is normal. This inherits from the fact that the determinant is a group homomorphism, and thus that

the product of determinants of inverse matrices is .
Generally, a special group of matrices has determinant  (more examples following this naming
convention exist)

Any "rotation subgroup"  of dihedral group  is normal (informally) because the composition of
rotations is a rotation and two flips cancel out to being a rotation again.
We could also say "subgroup  is closed under conjugation by "

This is a quotient, which denotes set of cosets of a group. We will learn that this is also a group that "sands
away / congeals" the structure of the normal subgroup within the parent group.



If  is Abelian, then all of its subgroups are trivially normal. This might provide some insight into what "flavour"
normal groups have.

E.g. we define the sign homomorphism  that checks the parity of how many transpositions
define a permutation, i.e. .

Corollary (#2) 5.39

If  is an abelian group generated by  elements  with orders  where  and  are distinct primes, then
the order of  is .

Proof: every element in  can be written as  for  and . So,  can have
at most  elements (it could be smaller if there is "overlap" of the terms). By the first corollary of
Lagrange's theorem,  and  must both divide ; since  are distinct primes,  so  must
divide , i.e.  must be at least . Thus, .

This trivially extends to a group generated by any number of distinct primes

Proposition 5.40: Kernels of Homomorphisms are Normal Subgroups

If  is a group with subgroup  and  is a homomorphism from  to , then  is a normal
subgroup of .

Proof: for  and , . Thug, . So, it
follows from the fact that homomorphisms preserve inverses, which cancel out
The kernels of group homomorphisms provide good examples of normal subgroups

We define  as the alternating group ; it is subgroup of permutations that can be constructed as the
product of an even number of transpositions. By proposition 5.40, it is a normal subgroup.
Thus, ; this is suggestive of what we will see in the next chapter



Chapter 5E - The Quotient Construction and Noether's
Isomorphism Theorems
For group  with normal subgroup , we have seen the set  of cosets induced by  in . It turns out that
the set  is amenable to being a group; we just have to determine the right operation to define over it. This is
known as the quotient construction;  is a quotient group under this operation.

Informally, we can give the cosets of  by implied by  a group structure by defining a homomorphism  from 
that "adapts" 's operation to . Specifically, to operate on two elements of , we pick arbitrary members
from the corresponding cosets and use 's operation on those, then take that element's coset.

We say an operation is well-defined if it is a group epimorphism (surjective homomorphism), since this suggests
some sort of "many-to-one" mapping like a coset or equivalence class. Importantly, if an operation is well-defined,
we can chose any representatives from the classes over which it is defined and get the same result.

E.g.  is a quotient group since  is abelian → all subgroups are normal. , so  has  elements
(aside: why is the index equal to the order of the quotient group? we'll see…). In particular,  is isomorphic to

; we can see this with the mapping .

We also adopt the notation  to denote the coset of  associated with  where  is clear based on
context.

Theorem 5.41: Quotient Construction

For group  with normal subgroup , we can define a unique product over the set  of cosets of  in 
that makes it a group. Further, the function  that maps an element of  to its coset induced by

 (i.e. defined by ) is a group homomorphism.

Proof that  is well-defined: let  by arbitrary such that  and . So,  for
some , and thus  (insertion) .  is a normal subgroup, so

, and thus  by definition (i.e. ). Thus, , proving
well-definedness for . For , if , then  . Thus,  is well-
defined.

It is routine to show that  is a group under the binary operation , and that  is a group
homomorphism

In general,  is isomorphic to , with isomorphism . The proof is straightforward.

Theorem 5.42: Factorization Theorem

Let  be a group homomorphism between groups  and . Let  be a subgroup of  that is
normal in , i.e. . Let .

Then there exists a homomorphism  such that .



Informally, the factorization theorem suggests that if we have a homomorphism , the structure of the
homomorphism is preserved if we take the quotient with respect to some normal subgroup  of  "first".
Specifically, it states we can find another homomorphism from  to the subgroup .

We can illustrate the factorization theorem with the following commutative diagram

G H

G=N

'

°
'

More succinctly, the First Isomorphism Theorem states that  for any . It is a special case
of the Factorization Theorem, i.e. when  (which is know is normal). Intuitively, the structure of  is
the same as the internal structure of the cosets of . So, taking the quotient doesn't "remove any detail" about
the structure of the cosets of , just the "detail" within the cosets.

Since  also "depends" on the definition of , the structures "line up" so that nothing about the
relationships between the cosets are changed.

Theorem 5.43: First Isomorphism Theorem

Let  be a group homomorphism between groups  and . Let  be a subgroup of  that is
normal in , i.e. . Let . (same as factorization thm assumptions).

If , then  is an isomorphism between .

Note: if  is surjective, then  and  is an isomorphism.

E.g. Define the homomorphism  as .  is surjective and . By the first
isomorphism theorem,  is isomorphic . Moreover, by the factorization theorem,  given
by  is an isomorphism since .
E.g. if  is the group of affine transformations and  is the group of translations. We define the
homomorphism  that simply considers the invertible matrix part of the affine transformation
(and discards the translation). Clearly, , so by the First Isomorphism Theorem, .

Theorem 5.44: Correspondence Theorem

Let  be a group with normal subgroup 

If  (i.e.  is a subgroup of  that contains ), then  maps  to  and  is a subgroup
of . Furthermore, if  is normal in , then  is normal in .

If  (i.e.  is a subgroup of ), then  is a subgroup of  that contains , i.e.
. Furthermore, if  is normal in , then  is normal in . Here,

.

I.e.  is normal in .

Proof (1):  must be a subgroup of .  is normal in , so for  and , we have

. We know , so . So  is normal in ; the proof
more or less inherits from well-definedness.



Intuition: through the factorization and first isomorphism theorems, we learned how  and  interact together on
elements of . The correspondence theorem examines what happens to the structure of entire subgroups of .

So, the second isomorphism theorem tells us what the structure a subgroup  will have when mapped from  to
quotient  by .

Intuition: We know from the correspondence theorem that  is a subgroup of ; the second isomorphism
theorem gives us more information about its structure, namely that it is isomorphic to .

The Third Isomorphism Theorem tells us that quotients of groups act in the same way as division: taking the
quotient by  of both terms of a different quotient ( ) will yield an isomorphism.

Intuitively, if  is normal subgroup of both  and , then the structure "wiped away" by  is shared by both 
and , so it would also by "wiped away" by the quotient  as well.

Proof (2): Again,  must be a subgroup of  because  is a homomorphism. For  and ,

we have .  is normal by
assumption, so the first assumption must hold;  is normal.

When  is a homomorphism for subgroup normal  of  and we have  such that ,
it turns out , i.e. the quotient gets applied to subgroup  just like it does to subgroup . So, a
given subgroup  of  corresponds to a subgroup  of .

The second part suggests that this happens in reverse: if  is some subgroup of , then  will be a
subgroup of  that contains  as a normal subgroup. In this sense,  "gives back" the structure of the full
group from the quotient;  gets "expanded" out from "nothing".

We also see that "normality" is preserved by .

Theorem 5.45: Second Isomorphism Theorem

Let  and . Then,

.

It also states that ; intuitively, since  performs a quotient by , "multiplying" by  here
won't make a difference.

Theorem 5.46: Third Isomorphism Theorem

Let  (where we also have ). Then .



Chapter 6 - Finite Abelian Groups and Semi-direct
Products
We define the direct product  of groups  and  as .

E.g. the vector space  is the direct product 

E.g. If we define  as the group of rotations of the plane (under composition), then  is a group isomorphic
to a 2D torus.

Expressing a group as the direct product of other groups gives insights into its structure.

Chinese remainder theorem: For distinct primes  and , there exists  such that 
and 

To find all the possible finite abelian groups of a given order (e.g.  for this example), we:

Specifically, for  and , we have 
Identity: 

Inverse: 

Theorem 6.2

If  decomposes into prime factors  where any two  terms are distinct, then
.

Note: we may have . E.g. . This is clear from the orders of the subgroups in
each group
Proof relies on applying first isomorphism theorem to the homomorphism 
given by 

Theorem 6.4: Classification Theorem for Finite Abelian Groups

Every finite abelian group is isomorphic to a direct product of cyclic groups whose orders are prime powers.
I.e. any finite abelian  is isomorphic to . For not necessarily distinct primes

.

The order of this group is clearly . So, the property of  needing to be decomposable
into prime factors also applies to  as well (so  is some kind of homomorphism).

Find the prime factors of the order: .

Find every way to write the factored expression as a product of prime powers (with at least one different
term): , , , , , .

These correspond to the possible decompositions into cyclic groups



The idea of decomposing a group into a direct product of simpler groups is helpful, but the direct product is only
defined for finite abelian groups. The semi-direct product generalizes this concept to non-abelian groups.

Corollary 6.5: Cauchy's Theorem for Finite Abelian Groups

if  is a finite abelian group and prime  divides , then  has a subgroup of order .

Proof sketch: the structure of  must be isomorphic to some  by THM 6.4, so for any
prime  that divides  must be equal to some  in the decomposition. A subgroup of  of order  is

generated by , since the order of this subgroup must divide  → is . So, the subgroup

 of  is over order .

Theorem 6.6

For prime ,  (the group over invertible elements of  under multiplication) is cyclic and of order .
Thus, it is isomorphic to .

Theorem 6.7: Structure Theorem of 

For , we have .

For any , then  under  is isomorphic to  under addition (and thus cyclic).

Definition 6.8: Semi-direct Product

Let  be a group with subgroups  where  and . Furthermore, assume , i.e.
any  is equal to  for , . Then,  is the semi-direct product  of  and .

E.g. 

E.g.  where  is the alternating group.



Chapter 7 - Group Actions
A group action on a set takes one member of the set and maps it to another in a way that mirrors the structure of
the group. So, a group action "applies" the structure of a group to the set. Actions are defined when the structure
of the set is compatible with that of the group.

Recall that for a set , the set of bijections  is a group under composition denoted .

A group may act on itself (i.e. when the set  being acted upon is  itself) or the set of its own subgroups.
Common self-actions include

The conjugacy class of  set of . So, the conjugacy class of  is its orbit under  acting
on itself by conjugation.

Definition 7.2: Group Action

An action of group  on a set  is a homomorphism .

An action of  on  permutes the numbers .
An action of  on the set of vertices of a regular -gon transforms the -gon in a way that preserves its
structure

An action of  acts on the set of vectors  by matrix-vector multiplication

Left multiplication: for ,  acts on  by multiplying it on the left: 

Conjugation: for , , 

Subgroup conjugation: for subgroup  of ,  acts on  by .

Theorem 7.3: Cayley's Theorem

Any finite group  is isomorphic to a subgroup of .

Proof: we know a homomorphism  given by left multiplication exists. Trivially, we can show
 →  is an isomorphism →  → .

Definition 7.4: Orbits

Let group  act on set  and fix . The orbit  of  is the set of all the elements of  that can be
reached from  by applying an action of , i.e. .

E.g. if  is the set of rotations in  (i.e. ) and  is , then the orbit of element  is set of
points with distance  from the origin, i.e.  is the circle of radius .

E.g. if  is  and  is , then the orbit of any element in  is trivially .
E.g. if  acts on the set of its own subgroups by left-multiplication, the orbit of  is the right coset 



Any two orbits are either equal or disjoint; so orbits partition the set  (and thus imply an equivalence relation
over ). (Proposition 7.5).

An orbit is transitive if there is only one orbit (which contains every element of ). (Definition 7.6)

The orbit-stabilizer theorem states that if  and  are in the same coset with respect to , then the actions
of  and  on  yield the same result, i.e. . Since applying any  to  yields  itself by
definition, any  in the coset  acts the same way on . So, stabilizers and orbits reference the same
underlying structure.

By corollary (7.9), if  is finite, then  for any .

E.g. Say we have  beads on a string, where  beads are red,  are orange, etc. The permutation group  acts
on the string of beads by permuting them; let  be the original configuration of beads. The stabilizer of the initial
configuration (and any configuration) is the set of permutations that only permutes beads of the same color. This
group is isomorphic to . So, by corollary 7.9, the number of distinct configurations is

.

Definition 7.7: Stabilizer, Centralizer, Normalizer

Let group  act on set . The stabilizer  of  is the set , i.e. the set of
actions in  that send the element  to itself. The stabilizer is a subgroup of .

If  acts on itself by conjugation, we call this set the centralizer of 

If  acts on the set of its own subgroups by conjugation, we call this set the normalizer of .

E.g. if  acts on itself by left-multiplication, then for any , .
E.g. if  is the set of symmetries of the cube and  is the set of vertices of the cube, the stabilizer of action
of some vertex  is the set of actions in  that don't move that vertex

E.g. if  is  acting on , then the stabilizer of some permutation number  is the set of
permutation in  that fix .

Theorem 7.8: Orbit-Stabilizer Theorem

Let group  act on set  and fix . Then, the function  given by 
is a bijection.

 is not necessarily normal, so  might not be a group itself. However, if it is, then  is
an isomorphism.

Proof: First we show that  is well-defined. Let ,  and  be in the same coset of 
by . We have ;  (for some )  (by defn of ) ,
so  is well-defined. Since  is arbitrary in the theorem,  is clearly surjective. By factorization theorem,

 (where ). So,  and thus . Finally,
. So,  for some

, so  (injectivity). So,  is a bijection.



The language of orbits and stabilizers is useful for counting because it lets us reason about indistinguishable
objects as being "fixed" under the action of permutation.

Canonical problem example: how many distinct necklaces can be created with some fixed collection of  beads,
where some beads may be the same color?

This gives a group theory argument for the "multinomial rule" for counting sets of objects partitioned into
classes of indistinguishable objects.

We can use a similar argument to derive the formula .

Lemma 7.10: Burnside's Lemma

Let  be a finite group acting on finite set . The number of distinct orbits of actions of  (i.e. over all of 

) is equal to , where  is the set of elements in  fixed some 

.

Proof: Since both variables are existentially quantified, we have
, i.e. the total number of fixed elements over all of  is

the same as the number of stabilizing actions over all of . By orbit-stabilizer,

. Since the set of orbits in  partitions ,  must equal

the number of orbits in , i.e. . So,  

Count the arrangements of beads on the string (i.e. as done above)
Consider tying the ends of this string together; each bead would be at the vertex of a regular -gon, so we can
use the dihedral group .

Two arrangements of beads on the string form the same necklace iff they are in the same orbit under the
action of .

For each element of , we manually consider (i.e. count) which necklaces get fixed. Generally:
 trivially fixes every configuration

Often, depending on the distribution of colors, only a few members of  have fixed
elements, so they are easy to count.

Also, depending on , subsets of rotations might "act" the same way (e.g.  and  in ), so they will
fix the same necklaces.

 requires opposite vertices be the same color. If  is even,  either reflects across two vertices or two
edges; these cases should be treated differently, but any member of the same case yields the same result,
so they can be counted together. If  is odd, every reflection acts the same way.

Then, we simply add up all the sizes of the fixed sets and divide by  as stated by burnside's lemma.



Appendix - Menagerie of Groups
Much like graph theory, studying group theory has awoken in me the magpie-like tendency to collect shiny things.

Arithmetic
The group  of integers under both  and .

The group  of integers mod  under both  and .

The groups consisting of  and  under addition, and  and  under multiplication.

Geometry, Transformations, and Matrices
The general linear group  over field , which consists of all the  invertible matrices over  under
matrix multiplication. These correspond to all the invertible transformations of .

The orthogonal group  over field , which consists of the  matrices  over  such that , i.e.
where , i.e. the group of orthogonal matrices. These correspond to the distance-preserving
transformations of .

The special linear group  over field , which consists of all the  matrices over  with determinant 
under matrix multiplication. These correspond to the rotations of .

The Euclidean group  of isometries of the euclidean space .

The group of affine transformations of , i.e. transformations of the form  for invertible .

The group of upper-triangular matrices under matrix multiplication.

The dihedral groups .

Algebraic

The -th roots of unity (of the form  for ) form an cyclic, abelian group

under multiplication.

Combinatorial

The group  of the invertible classes of  under multiplication

This is a subgroup of .

This is also a subgroup of 

The special orthogonal group is the subgroup of the special linear group of orthogonal matrices with
determinant .

The wallpaper groups.

https://en.wikipedia.org/wiki/Wallpaper_group


The symmetric group group  of permutations of  elements; the symmetric group  of permutations of
a set .

The alternating group  (commutator subgroup of ) consisting of the even permutations in ; it is the
kernel of the signature group homomorphism .


